Le nombre d'or fascine les esprits depuis des millénaires. On le désigne par la lettre grecque φ (Phi) en référence au sculpteur grec Phidias (500 av JC) qui l'utilisa pour travailler sur la statue d'Athéna décorant le Parthénon à Athènes.
Il semble être utilisé par la nature, les peintres l'ont employé, il fut de très nombreuses fois utilisé par les architectes pour trouver des proportions harmonieuses, et finalement, il fut étudié par beaucoup de brillants mathématiciens.
Le nombre de tout temps
De tout temps, si on demande à des personnes de dessiner un rectangle quelconque, le format des rectangles sera (dans 75% des cas selon le physiologiste et philosophe allemand Gustav Fechner, en 1876) proche du nombre d'or.
Phi est également appelé "nombre divin". Comme l'ont démontré Léonard de Vinci et bien d'autres après lui, il régit les proportions de la nature. Par exemple, une coquille d'escargot possède une forme en spirale, et le rapport de la largeur de 2 spires consécutives vaut Phi. Et ce n'est pas le seul cas; le corps humain est également régi par cette proportion; de nombreuses études montrent aussi que le rapport entre mâles et femelles dans une ruche vaut également "phi". Il est aussi étudié comme une clé explicative du monde, particulièrement pour la beauté. Il est érigé en théorie esthétique et justifié par des arguments d'ordre scientifique ou mystique : omniprésence dans les sciences de la nature et de la vie, proportions du corps humain ou dans les arts comme la peinture, l'architecture ou la musique.
Certains artistes, tels le compositeur Xenakis ou le poète Paul Valéry ont adhéré à une partie plus ou moins vaste de cette vision, soutenue par des livres très populaires.
Cependant, à travers la médecine, l'archéologie ou les sciences de la nature et de la vie, la science infirme les théories de cette nature car elles sont fondées sur des généralisations abusives et des hypothèses inexactes.
Principes
Le nombre d'or n'est pas "réellement" un nombre, mais plutôt le rapport entre deux nombres (d'ailleurs, il se nomme aussi proportion divine ou aussi phi).
Phi (φ) est un nombre irrationnel dont la valeur exacte est : 
Le nombre d'or, vous le verrez, a des particularités mathématiques assez étonnantes.
Propriétés algébriques du nombre d'or
Deux nombres sont dit être dans le rapport du nombre d'or ou dans la divine proportion, si le tout par rapport au plus grand est comme le plus grand par rapport au plus petit: (a+b) / a = a / b ou encore b / (a-b) = a / b
Après quelques manipulations algébriques (multiplier la première équation avec a/b ou la seconde avec (a - b)/b), chacune des équations est alors équivalente à: (a / b)2 = a / b + 1
et donc: a / b = φ
Finalement, afin d'utiliser la divine proportion, il vous suffira de calculer: a = φ * b
Carré du nombre d'or
Pour calculer le carré du nombre d'or, il suffit de lui ajouter 1: φ² = φ + 1
Inverse du nombre d'or
Pour calculer l'inverse du nombre d'or, il suffit de lui retrancher 1: 1/φ = φ - 1
Puissances du nombre d'or
φ² = φ + 1
φ3 = φ² + φ = 2 φ + 1
φ4 = 2 φ² + φ = 2 φ + 2 + φ = 3 φ + 2
φ5 = 3 φ² + 2 φ = 3 φ + 3 + 2 φ = 5 φ + 3
φ6 = 8 φ + 5
φ7 = 13 φ + 8
Les puissances du nombre d'or s'expriment en fonction de φ et de 1 et les coefficients ne sont autres que les nombres de Fibonacci. Pour obtenir une puissance du nombre d'or, il suffit de connaître les deux puissances précédentes et de les additionner, ce qui est exactement le procédé de construction de la suite de Fibonacci!
Écriture universelle du nombre d'or
Le nombre d'or peut s'écrire sous cette formule : où x est égal à tout nombre réel positif.
Applications
Nous allons voir ici comment utiliser le nombre d'or. Il est vrai que dans la vie de tous les jours, il est peu probable d'avoir à l'utiliser. Toutefois, pour la création d'une œuvre artistique, ce dernier peut-être très utile. Attention. la construction architecturale est aussi considérée comme œuvre artistique ; ainsi, le nombre d'or peut-être utilisé afin de définir les proportions d'un bâtiment et de ses murs.
Nous l'avons vu plus haut: a = φ x b (Phi multiplié par b). Il devient alors simple de trouver les longueurs nécessaires afin d'obtenir la proportion divine.
Le segment d'or
Une ligne est divisée en deux segments a et b. La ligne entière est au segment a ce que le segment a est au segment b. Un nombre est dans le rapport du nombre d'or ou dans la proportion divine si: a/b=(a/b)+1 et donc a/b=φ
|